If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=88
We move all terms to the left:
2x^2+x-(88)=0
a = 2; b = 1; c = -88;
Δ = b2-4ac
Δ = 12-4·2·(-88)
Δ = 705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{705}}{2*2}=\frac{-1-\sqrt{705}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{705}}{2*2}=\frac{-1+\sqrt{705}}{4} $
| -22,5=-2c-30,5 | | 5+(2.5*d)=65 | | 6=3s6 | | 6=3s6=3s6 | | 75t+4/5=5/6 | | -16t^2+30t+13=0 | | x^2−x=−4x+18 | | 6^-9y=3 | | x^2-x=-4x+18x2−x=−4x+18 | | n+3-9=n-12 | | 4(x+1)^2+28=40 | | x^2-6x=45 | | 25(q+3)=950 | | j/17+227=240 | | u/18+387=414 | | r-453/15=24 | | 2x2+37x+35=0 | | 256(10)^x=1.62 | | k/20+71=79 | | 26w+100=932 | | 69+9b=987 | | 120/r=10 | | h/8+37=43 | | 28/u=4 | | n/4+50=59 | | 4+3(2y-9)9-y= | | m-66=18 | | j/7+72=78 | | 4c+18=94 | | 160=m*1.62 | | –4p−10=p | | 3x−9=4x−11 |